i

Table of Contents

		Page
	Abstract	iv
1.	Introduction	1
2.	Design Specifications	2
3.	Conditions in Caisson	2
4.	Mechanism of Dust Formation During Rock Drilling	3
5.	Laboratory Studies and Apparatus	4
	5.1. The Environmental Chamber	4
6.	Experiments Conducted in the Environmental Chamber	6
	6.1. Exhaust Air Discharge Rate from Pneumatic Drill	6
	6.2. Maximum Particle Velocity	6
	6.3. Sequence of Events in Drilling Inside a Caisson	8
	6.4. Total Dust Loading Experiment	9
	6.5. Particle Size Distribution in the Breathing Zone	10
7.	Impact of Ground Water on Dust Dispersion	11
8.	Design of the Dust Abatement System	12
	8.1. Selection of Particle Cleaning Device	13
	8.2. The VCP Cyclone	15
	8.3. Scrubbing with Spray Nozzles	15
	8.4. Ventilation System	17
	8.5. Transport Tube	19
9.	Simulated Tests of the Dust Abatement System	21
	9.1. More Design Considerations and Equipment Tests	2!

Hand-dug Caisson Dust Abatement Syste	Hand-dug	Caisson	Dust	Abatement	Svs	ten
---------------------------------------	----------	---------	------	-----------	-----	-----

10.	Field Tests	22
	10.1. Preliminary Tests	22
	10.2. Additional Tests	24
	10.3. Caisson Description	25
	10.4. Equipment Used	25
	10.5. Test Schedule	25
	10.6. Observations	25
	10.7. Dust Abatement Results	26
	10.8. The Discharge of Treated Air into the Atmosphere	27
	10.9. Other Field Tests	28
11.	Noise Level of the Ejector	31
12.	Conclusions	32
13.	Recommendations	33
Ackr	nowledgment	34
Refe	rences	35
List o	of Figures	
1.	Environmental Chamber	36
2.	Trajectory of an Ejected Particle	37
3.	Distance Distribution of Settled Dust Particles	38
4.	Dust Formation Sequence in Environmental Chamber	39
5.	Frequency Distribution of Dust Formation - Total Dust Loading	41
6.	Cumulative Percentage Distribution of Dust Formation	
	- Total Dust Loading	42
7.	Log-normal Probability Distribution of Dust Formation	
	- Total Dust Loading	43
8.	Frequency Distribution of Dust Formation - Breathing Zone	44
9.	Cumulative Percentage Distribution of Dust Formation	
	- Breathing Zone	45
10.	Log-normal Probability Distribution of Dust Formation	
	- Breathing Zone	46
11.	Spray Nozzle Assembly	47

12.	Air Ejector	48
13.	Effect of Caisson Depth on Ejector Flow	49
14.	Effect of Caisson Diameter on Dust Removal	5 0
List	of Tables	
1.	Efficiencies of Commonly Available Particulate Collectors	13
2.	Comparison of Some Commonly Available Particulate	
	Collection Devices	14
3.	Dust Removal by Spray Nozzle System	16
4a.	Dust Removal in Terms of Severity Factors	24
4b.	Dust Removal in Terms of Percent Removed	24
5.	Respirable Dust Removal Efficiency	27
6.	Dust Removal in Caissons - Field Test Results	29
7.	Impact of Caisson Diameter on Removal Efficiency	30
8.	Noise Generated by the Ejector	31
9.	Calculated Sound Power Levels in Caisson	32
	endices	
I.	1) Rock Removal Process in Hand-dug Caissons	51
	2) Layout of Abatement System in Caisson	51
II.	Instruction for the Operation of the Abatement System	57
Ш.	Calculation of the Sound Power Level of the	
	Ejector in a Cylindrical Cavity	61
Figur	re A-1. Drilling in a Caisson	53
Figur	re A-2. Water Spray Assembly	54
Figur	re A-3. Air Ejector Placement	55
Figur	re A-4. Cut-away View of Ejector	56
Figur	re I-1. Ejector-transport Tube Assembly	60

Abstract

Caissons are widely used in foundation preparation in Hong Kong. Typically these caissons are 1 to 4 meters in diameter and 10 to 30 meters in depth. Because of the hilly terrain, manual digging is the preferred method and furthermore, because of the geology, granite is usually encountered and has to be removed by pneumatic drills. This creates a great deal of silica containing dust in a confined space and is extremely hazardous to the drill operators. As high as 2000 times TLV have been measured in previous studies and some drill operators contracted silicosis within one year.

An *in situ* dust removal system, using wet scrubbing and ventilation methods, was designed, fabricated and field tested and proved to be effective in removing up to 98% of the dust generated in an 1-m diameter caisson.

Key words: Caisson, silicosis, dust removal, wet scrubbing.

